
De: Melissa Faria <melissa@bacula.com.br>

Para: selc@trt3.jus.br

cc: heitor <heitor@bacula.com.br>

Data: Segunda-feira, 16 De março De 2020 15:26

Assunto: Pedido de Juntada: Contrarrazões ao Recurso PE 05/2020 TRT3

Histórico: Esta mensagem foi encaminhada.

Prezados Senhores,

Encaminhamos, ainda no nosso prazo legal de contrarrazões, o pedido de juntada de
documentação oficial, em anexo (dois arquivos).

Favor confirmar o recebimento.

Atenciosamente,

Melissa Faria

Diretora Comercial Bacula LATAM

phone: + 1 323 300-5387
mobile 1: + 55 61 99118-2604

mobile 2: +1 909 655-8242

Brasilia - Miami - New York

www.bacula.com.br

Anexos:

Whitepaper Global Endpoint Deduplication.pdf
Contrarrazões Recurso Administrativo TRT3
Juntada (1).pdf

Página 1 de 1

17/03/2020https://mail.notes.na.collabserv.com/data0/22040999/22098853.nsf/(%24Inbox)/B15...

De: Melissa Faria <melissa@bacula.com.br>

Para: selc <selc@trt3.jus.br>

cc: heitor <heitor@bacula.com.br>

Data: Segunda-feira, 16 De março De 2020 16:25

Assunto: Novo Pedido de Juntada: Contrarrazões ao Recurso PE 05/2020 TRT3

Histórico: Esta mensagem foi encaminhada.

Prezados Senhores,

Pedimos, mais uma vez, ainda no prazo legal das nossas contrarrazões, a juntada de
comprovação de atendimento à funcionalidade questionada pela empresa "America
Tecnologia de Informática e Eletro-Eletronicos" no seu recurso.
Trata-se de um vídeo demonstrativo.

Favor confirmar recebimento.

Atenciosamente,

Melissa Faria

Diretora Comercial Bacula LATAM

phone: + 1 323 300-5387
mobile 1: + 55 61 99118-2604

mobile 2: +1 909 655-8242

Brasilia - Miami - New York

www.bacula.com.br

Anexos:

Contrarrazões Recurso Administrativo TRT3 Juntada2.pdf

Página 1 de 1

17/03/2020https://mail.notes.na.collabserv.com/data0/22040999/22098853.nsf/(%24Inbox)/F8B7...

ILUSTRÍSSIMO SENHOR PREGOEIRO E COMISSÃO DE LICITAÇÃO DO TRIBUNAL
REGIONAL DO TRABALHO 3ª REGIÃO

Edital Nº: 05/2020
Processo: ePAD 4559/2020 SEIT
Objeto: contratação de estrutura de Backup composta de Licenças de Software e
Servidores de Rede com alta capacidade de armazenamento para o Tribunal Regional do
Trabalho da 3ª Região, incluindo instalação, suporte técnico, garantia e treinamento, nos
termos deste Edital e seus anexos.

A empresa Bacula Brasil e América Latina (Razão Social: Heitor Medrado de

Faria e CNPJ: 21.456.594/0001-10), devidamente qualificado nas Contrarrazões de
Recurso, vem, tempestivamente, pedir a juntada de mais um documento complementar,
comprobatório da funcionalidade questionada, em anexo (Doc 01. "Whitepaper Global
Endpoint Deduplication", da Bacula Systems), às suas contrarrazões ao recurso
administrativo interposto pela "America Tecnologia de Informática e Eletro-Eletronicos".

1/2

Especialmente no tópico 6 - Supported Platforms (página 31), resta evidente o

suporte da funcionalidade de Deduplicação Global para todas as plataformas suportadas
pelo sistema Bacula Enterprise, inclusive Sistemas Operacionais da Microsoft.

Termos em que,
Pede Juntada.

Brasília-DF, 16 de março de 2020

2/2

ILUSTRÍSSIMO SENHOR PREGOEIRO E COMISSÃO DE LICITAÇÃO DO TRIBUNAL
REGIONAL DO TRABALHO 3ª REGIÃO

Edital Nº: 05/2020
Processo: ePAD 4559/2020 SEIT
Objeto: contratação de estrutura de Backup composta de Licenças de Software e
Servidores de Rede com alta capacidade de armazenamento para o Tribunal Regional do
Trabalho da 3ª Região, incluindo instalação, suporte técnico, garantia e treinamento, nos
termos deste Edital e seus anexos.

A empresa Bacula Brasil e América Latina (Razão Social: Heitor Medrado de

Faria e CNPJ: 21.456.594/0001-10), devidamente qualificado nas Contrarrazões de
Recurso, vem, tempestivamente, pedir a juntada de mais uma evidência complementar
(vídeo), com demonstração comprobatória da funcionalidade questionada disponível no
link https://www.youtube.com/watch?v=wsEShAM8bu0&feature=youtu.be, às suas

1/2

contrarrazões ao recurso administrativo interposto pela "America Tecnologia de
Informática e Eletro-Eletronicos".

Termos em que,
Pede Juntada.

Brasília-DF, 16 de março de 2020

2/2

Global Endpoint
Deduplication
Bacula Enterprise Edition

Bacula
Systems

White
Paper

This document is intended to provide insight into the consid-
erations and processes required to implement deduplication
with Global Endpoint Deduplication backups and Bacula En-
terprise Edition.

Version 12.2.3-1, March 16, 2020

Copyright ©2008-2020, Bacula Systems

All rights reserved.

Contents
1 Glossary 2

2 Deduplication 3
2.1 Advantages of Deduplication . 3
2.2 Cautions About Using Deduplication 4
2.3 Aligned Volumes . 4
2.4 Global Endpoint Deduplication . 5
2.5 How Bacula Global Endpoint Deduplication Works 5

2.5.1 Global Endpoint Deduplication During Backup Jobs 5
2.5.2 Global Endpoint Deduplication During Restore Jobs 6
2.5.3 Client Side Rehydration . 7

2.6 New Storage Daemon Device Directives 8
2.7 New Director Daemon FileSet Directive 9
2.8 New File Daemon Directive . 11
2.9 Things to Know About Bacula . 11
2.10 Deduplication Engine Vacuum . 11
2.11 Deduplication Engine Status . 12
2.12 Disaster Recovery . 15

2.12.1 Catalog . 15
2.12.2 Volumes . 15
2.12.3 Index . 15
2.12.4 Free Space Map (FSM) . 15
2.12.5 Containers . 16

3 Dedupengine 16
3.1 Sizing the Index . 16

3.1.1 Setting up the Index size 17
3.1.2 Locking the index into memory 18

3.2 Commands to Tune the Index . 18
3.3 Punching holes in containers . 19

3.3.1 Theory: creating holes . 20
3.3.2 Theory: smart allocating in between holes 20
3.3.3 Commands to create and manage holes 21

3.4 Quiesce and Unquiesce . 21
3.5 Detect, Report and Repair Dedupengine Inconsistencies 22

3.5.1 checkindex option of the vacuum command 22
3.5.2 checkmiss and checkvolume options of the vacuum command 23
3.5.3 Self Healing . 24
3.5.4 Container Scrubbing . 25

4 Hardware Requirements 29
4.1 CPU . 29
4.2 Memory . 29
4.3 Disks . 29

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

1 / 32

http://www.baculasystems.com/contactus

5 Restrictions and Limitations 30

6 Supported platforms 31

Executive Summary
IT organizations are constantly being challenged to deliver high quality solutions
with reduced total cost of ownership. One of those challenges is the growing amount
of data to be backed up, together with limited time to run backup jobs (backup
window). Bacula Enterprise offers several ways to tackle these challenges, one of
them being Global Endpoint Deduplication, which minimizes network transfer and
Bacula Volume size using deduplication technology.
This document is intended to provide insight into the considerations and processes
required to successfully implement this backup technique.

1 Glossary
◾ Chunks Bacula cuts files into chunks. Every chunk is stored and indexed in
the deduplication engine (DedupEngine).

◾ Containers This is where chunks of data are stored sequentially. Bacula uses
65 containers to handle different chunk sizes (1K - 65K)

◾ Container Area This is the set of the 65 containers that can be accessed
through a unified addressing method.

◾ FSM (Free Space Map) The FSM structure maintains free areas in the Con-
tainers. The FSM is stored in a file and mapped into memory.

◾ Index The Index is a Tokyo Cabinet hash database which maps chunk hashes
to physical addresses in the Container Area.

◾ DDE (DedupEngine) The deduplication engine manages the Container Area,
the Free Space Map and the Index. The deduplication engine converts chunks
into references and stores or retrieves chunks.

◾ Client Side Rehydration is a heuristic algorithm that searches in files still
present on the client for the chunk that will be restored.

◾ Vacuum reclaims storage occupied by unused chunks. In normal operation,
chunks that are unreferenced by a purge are not physically removed from
their container; they remain present until a vacuum is done. Therefore it is
necessary to perform a vacuum process periodically.

◾ Reference is a reference to a chunk (block) in the deduplication engine.
Usually a Reference is a set of 3 items:

– the hash of the chunk

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

2 / 32

http://www.baculasystems.com/contactus

– the address of the chunk in the Container Area
– the size of the chunk

Querying the Index with the hash allows the DDE to retrieve the address and
the size. Computing the hash of the chunk and comparing it with the hash
allows the DDE to verify the integrity of the data. The address provides direct
and fast access to the chunk.

2 Deduplication
Deduplication is a complex subject. Generally speaking, it detects that data be-
ing backed up (usually chunks) has already been stored and rather than making
an additional backup copy of the same data, the deduplication software keeps a
pointer referencing the previously stored data (chunk). Detecting that a chunk has
already been stored is done by computing a hash code (also known as signature
or fingerprint) of the chunk, and comparing the hash code with those of chunks
already stored.
The picture becomes much more complicated when one considers where the dedupli-
cation is done. It can either be done on the server and/or on the client machines. In
addition, most deduplication is done on a block by block basis, with some deduplica-
tion systems permitting variable length blocks and/or blocks that start at arbitrary
boundaries (sliding blocks), rather than on specific alignments.

2.1 Advantages of Deduplication
◾ Deduplication can significantly reduce the disk space needed to store your
data. In good cases, it may reduce disk space needed by half, and in the best
cases, it may reduce disk space needed by a factor of 10 or 20.

◾ Deduplication can be combined with compression to further reduce the storage
space needed. Compression depends on data type and deduplication depends
on the data usage (on the need or the will of the user to keep multiple copies
or versions of the same or similar data). Bacula takes advantage that both
techniques work perfectly together and combines them in it’s Dedupengine.

◾ Deduplication can significantly reduce the network bandwidth requried be-
cause both ends can exchange references instead of the actual data itself. It
works when the destination already has a copy of the original chunks. Dedu-
plication works for backups but also when doing a restore, see section 2.5.3.

◾ Handling references instead of the data can speed up most of the processing
inside the Storage Daemon. For example, Bacula features like copy/migrate
and Virtual Full can be up to 1,000 times faster.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

3 / 32

http://www.baculasystems.com/contactus

2.2 Cautions About Using Deduplication
Here are a few of the things that you should be aware of before using deduplication
techniques.

◾ To do efficient and fast deduplication, the Storage Daemon will need addi-
tional CPU power (to compute hash codes and do compression), as well as
additional RAM (for fast hash code lookups). Bacula Systems can help you
to calculate memory needs.

◾ For effective performance, the deduplication Index should be stored on SSDs
as the index will have many random accesses and many updates.

◾ Due the extra complexity of deduplication, performance tuning is more com-
plicated.

◾ If your disk develops a bad block, instead of damaging one file (that may be
stored many times), it may damage all (dozen, hundred) files that contain
that same block of data. That is you have a single point of failure that
can cause more damage than would happen on a non-deduplicated or tape
system. These problems can be reduced by using file systems that checksum
everything such as ZFS and by using hardware RAID technology. If you are
not able to use ZFS, we advise you to use XFS.

◾ Deduplication collisions can cause data corruption. This is more likely to
happen if the deduplicating system uses a weak hash code such as MD5 or
Fletcher. The problem of hash code collisions is mitigated in Bacula by using
a strong hash code (SHA512/256).

◾ Deduplication is not implemented for tape devices. It works only with disk-
based backups.

2.3 Aligned Volumes
Bacula Systems’ first step in deduplication technology was to take advantage of
underlying deduplicating filesystems by offering an alternative (additional) Volume
format that is aligned on specific chunk boundaries. This permits an underlying
file system that does deduplication to efficiently deduplicate the data. This new
Bacula Enterprise Deduplication Optimized Volume format is often called “Aligned”
Volume format. Another way of describing this is that we have filtered out all the
metadata and record headers and put them in the Metadata Volume (same as
existing Volume format) and put only file data that can be easily deduplicated into
the Aligned Volume.
Since there are a number of deduplicating file systems available on Linux or Unix
systems (ZFS, lessfs, ddumbfs, SDFS (OpenDedup), LiveDFS, ScaleDFS, NetApp
(via NFS), Epitome (OpenBSD), Quantum (in their appliance), . . . , this Bacula
Aligned Volume implementation allows users to choose the deduplication engine
they want to use. More information about Deduplication Optimized Volume Format
can be found in Bacula Systems’ DedupVolumes whitepaper.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

4 / 32

http://www.baculasystems.com/contactus

2.4 Global Endpoint Deduplication
Bacula Systems’ latest step in deduplication technology is to offer the Global End-
point Deduplication feature. With Global Endpoint Deduplication, Bacula will an-
alyze data at the block level, then Bacula will store only new chunks in the dedu-
plication engine, and use references in standard Bacula volumes to chunks stored
in the deduplication engine. The deduplication can take place at the File Daemon
side (saving network and storage resources), and/or at the Storage Daemon side
(saving storage resources).
The remainder of this white paper will discuss only Global Endpoint Deduplication.

2.5 How Bacula Global Endpoint Deduplication Works
◾ First, please be aware that you need the dedup-sd.so or the bacula-sd-
dedup-driver-x.y.z.so Storage Daemon plugin for Global Endpoint Dedupli-
cation to work. Please do not forget to define the Plugin Directory in the
Storage Daemon configuration file bacula-sd.conf.

◾ Dedup devices are enabled by specifying the dedup keyword as a DeviceType
directive in each disk Device resource in the bacula-sd.conf where you want
to use deduplicated Volumes.

DeviceType = Dedup

◾ You must pay particular attention to define a unique Media Type for devices
that are Dedup as well as for each Virtual Autochanger that uses a different
Archive Device directory. If you use the same Media Type for a Dedup device
type as for a normal disk Volume, you run the risk that you will have data
corruption on disk Volumes that are used on Dedup and non-Dedup devices.

◾ When Global Endpoint Deduplication is enabled, the Device will fill in disk
volumes with chunk references instead of the chunks. Bacula encrypted data,
and very small files will be stored in the Volumes as usual. The deduplicated
chunks are stored in the “Containers” of the Dedupengine, and are shared by
all other dedup-aware devices in the same Storage Daemon.

◾ We advise to set a limit on the number of Jobs or the usage duration when
working with dedup Volumes. In case you prefer to use Maximum Volume
Bytes, please consider that two Catalog fields are considered when com-
puting the volume size. VolBytes represents the volume size on disk and
VolaBytes considers the amount of non-dedup data stored in the volumes,
i.e., the rehydrated data. If the directive Maximum Volume Bytes is used for
a dedup Volume, Bacula will consider both VolBytes and VolaBytes values to
check the limits.

2.5.1 Global Endpoint Deduplication During Backup Jobs

◾ When starting a Backup Job, the Storage Daemon will inform the File Daemon
that the Device used for the Job can accept dedup data.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

5 / 32

http://www.baculasystems.com/contactus

File Daemon Storage Daemon

SHA2 Digest
LZ4 Compression

File to
back up

Indexes
(optional)

block hash

fetch
if not existsor

ACK

Data
Buckets

Block
Queue

Volume

hashes

1kB and 64kB blocks

Indexes

Dedup
Engine

Dedup
Engine

Figure 1: Backup Scenario with “bothsides” Deduplication

◾ If the FileSet uses the dedup = bothsides option, the File Daemon will
compute a strong hash code for each chunk and send references to the Storage
Daemon which will request the original chunk from the File Daemon if the
Dedupengine is unable to resolve the reference.

◾ If the FileSet uses the dedup = storage option, the File Daemon will send
data as usual to the Storage Daemon, and the Storage Daemon will compute
hash codes and store chunks in the Dedupengine and the references in the
disk volume.

◾ If the FileSet uses the dedup = none option, the File Daemon will send data
as usual to the Storage Daemon, and the Storage Daemon will store the
chunks in the Volume without performing any deduplication functions.

◾ If the File Daemon doesn’t support Global Endpoint Deduplication, the dedu-
plication will be done on the Storage side if the Device is configured with
DeviceType = dedup.

2.5.2 Global Endpoint Deduplication During Restore Jobs

◾ If the directive Enable Client Rehydration is set to “yes” in the File Dae-
mon configuration file, the Storage Daemon will send references to the File
Daemon during a restore. If the directive is set to “no”, the Storage Daemon
will rehydrate all the references and send the chunks to the File Daemon.

◾ When the File Daemon receives a reference, it will try to rehydrate the data
using local data, see section 2.5.3 Client Side Rehydration,

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

6 / 32

http://www.baculasystems.com/contactus

File Daemon Storage Daemon

Restored
File

Indexes

ref

fetch request

Data
Buckets

Indexes

Dedup
Engine

Volume

hashes

block transfer

Dedup
Engine

2

5

6

3

2

4

Figure 2: Restore Scenario when using “Enable Client Rehydration”

2.5.3 Client Side Rehydration

The File Daemon can try to do some rehydration on its own using local data. This
feature can increase restore speeds for systems connected through a slow network
and doesn’t consume any resources at backup time.
This feature is activated with a FileDaemon resource directive called Enable Client
Rehydration in bacula-fd.conf.
We recommend against using this feature on a client connected through a fast
network, because the extra disk accesses and computation can slow down the speed
of the restore jobs.
To take advantage of this feature you must understand how it works. At restore
time, the client receives the original location, the offset and the hash of every chunk
to restore. It then looks to see if the original file still exists, opens it and checks
if the chunk at the given offset matches the given hash. If it matches, the File
Daemon uses it and does not download the chunk from the Storage Daemon.
It is obvious that to take advantage of this feature, you must:

◾ Restore the data to another location.

◾ Have some piece of the original data in the original location.

This feature can be very helpful to retrieve an old version of the current data.
Notice that this feature doesn’t work for files that are not going into the Dedupli-
cation Engine like small files or when data encryption is used. This also doesn’t

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

7 / 32

http://www.baculasystems.com/contactus

work when the data is transformed by Bacula before reaching the Deduplication En-
gine. For example, when compression is used or when backing up Windows systems
without the portable = yes option in the FileSet.
Unfortunately there is no evidence of the efficiency of the algorithm in the job
report yet. The only evidence is the read chunk counter shown by the dedup
usage command that is not incremented for chunks found on the Client.

2.6 New Storage Daemon Device Directives
◾ Plugin Directory = <directory-path>
This directive tells the Storage Daemon where to find plugins. The file dedup-
sd.so or the bacula-sd-dedup-driver-x.y.z.so must be present in this direc-
tory before starting the Storage Daemon.

◾ Dedup Directory = <directory-path>
Deduped chunks will be stored in the Dedup Directory. This directory is
common for all Dedup devices configured on a Storage Daemon and should
have a large amount of free space. We advise you to use LVM on Linux
Systems to ensure that you can extend the space in this directory. The Dedup
Directory directive is mandatory. We recommend that you do not change
this directory afterward, because if you make a mistake, it would invalidate
all of your backups. If you do change the Dedup Directory directive, the
following files must be moved to the new directory:

– *.blk

◾ Dedup Index Directory = <directory-path>
Indexes will be stored in the Dedup Index Directory. Indexes will have
a lot of random update accesses, and will benefit from fast drives such as
SSD drives. By default, the Dedup Index Directory is set to the Dedup
Directory.
As with the Dedup Directory, we recommend against changing the Dedup
Index Directory directive. If you do, the following files and directories must
be moved to the new directory:

– *.idx

– *.tch

– recovery

– recovery.new

The file bee_dde.tch.new is a temporary file used by the optimize part of
the vacuum that remain when the process is interrupted. This file don’t need
to be moved.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

8 / 32

http://www.baculasystems.com/contactus

◾ Maximum Container Size = <size>
No container will be allowed to grow to more than <size> bytes. When this
size is reached, a new container file will be created. The default value is zero,
meaning there is no limit. This limit is useful when you store your containers
on a filesystem that limits the size of the file to a pretty low value.
The number of containers is limited to 511, so we recommend to keep this
value unlimited or pretty high, at least 1TB. This value may be modified after
the initialization of the DedupEngine. If a container is already bigger than
the new limit, then no new data will be written to it, but its size will not be
reduced. Other containers will comply with the new limit.

◾ Device Type = Dedup
This directive is required to make the Device write Dedup volumes. Once
turned on, Bacula will use references in Volumes and will store data chunks
into specific container files.
Once a Device has been defined with a certain Type (such as Dedup, Aligned,
File or Tape), it cannot be changed to another Type. If you do so, the Bacula
Storage Daemon will not be able to properly mount volumes that were created
before the change.

From bacula-sd.conf
Storage {
Name = my-sd
Working Directory = /opt/bacula/working
Pid Directory = /opt/bacula/working
Subsys Directory = /opt/bacula/working

Plugin Directory = /opt/bacula/plugins
Dedup Directory = /mnt/bacula/dedup/containers
Dedup Index Directory = /mnt/SSD/dedup/index # Recommended to be on fast local SSD storage
Maximum Container Size = 4TB # Maximum 511 containers can be created, please adapt to your need

}

Device {
Name = "DedupDisk"
Archive Device = /mnt/bacula/dedup/volumes
Media Type = DedupVolume
Device Type = Dedup # Required
LabelMedia = yes
Random Access = Yes
AutomaticMount = yes
RemovableMedia = no
AlwaysOpen = no

}

2.7 New Director Daemon FileSet Directive
Within the Director, the Global Endpoint Deduplication system is enabled with a
FileSet Option directive called Dedup. Each Include section can have a different
behavior depending on your needs.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

9 / 32

http://www.baculasystems.com/contactus

Use the default dedup option of 'storage' side deduplication
FileSet {

Name = FS_BASE
Include {

Options {
Dedup = storage

}
File = /opt/bacula/etc

}

Do not dedup my encrypted data
Include {

Options {
Dedup = none

}
File = /encrypted

}

Minimize the network transfer by using 'bothsides' dedup option
Include {

Options {
Dedup = bothsides

}
File = /bigdirectory

}
}

The Dedup FileSet option can have the following values:

◾ storage - All the deduplication work is done on the Storage Daemon side if
the device type is dedup. The File Daemon will send all data to the SD just
as it normally would. (Default value)

◾ none - Disable dedpulication on both the File Daemon and Storage Daemon.

◾ bothsides - The deduplication work is done on the File Daemon and the
Storage Daemon.

About FileSet Compression

The data stored by the Global Endpoint Deduplication Engine is automatically com-
pressed using the LZ4 algorithm. Using the FileSet Compression = LZO|GZIP
option might reduce the deduplication efficiency, and compressing the data twice
consumes extra CPU cycles on the client side. Thus we advise that you do not
use client-side GZIP or LZO compression when using a Dedup Device. To prevent
such an inefficient configuration, we recommend setting the Allow Compression
directive in a Director Storage resource “No”:

cat bacula-dir.conf
...
Storage {

Name = Dedup
Allow Compression = No # Disable FileSet Compression

option automatically

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

10 / 32

http://www.baculasystems.com/contactus

Address = baculasd.lan
Password = xxx
Media Type = DedupMedia
...

}

2.8 New File Daemon Directive
The Enable Client Rehydration FileDaemon directive is optional and allows
Bacula to try to do rehydration using existing local data, see section 2.5.3 Client
Side Rehydration. The valid values are Yes or No. The default is No.
Starting with 8.2.0, the FileDaemon Dedup Index Directory in bacula-fd.conf
directive is deprecated and replaced by Enable Client Rehydration directive.

cat /opt/bacula/etc/bacula-fd.conf
FileDaemon {

...
Enable Client Rehydration = yes

}

2.9 Things to Know About Bacula
◾ You must pay particular attention to define a unique Media Type for devices
that are Dedup as well as for each Virtual Autochanger that uses a different
Archive Device directory. If you use the same Media Type for a Dedup device
type as for a normal disk Volume, you run the risk that you will have data
corruption on disk Volumes that are used on Dedup and non-Dedup devices.

◾ Dedup devices are compatible with Bacula’s Virtual Disk Changers

◾ We strongly recommend that you not use the Bacula disk-changer script,
because it was written only for testing purposes. Instead of using disk-changer,
we recommend using the Virtual Disk Changer feature of Bacula, for which
there is a specific white paper.

◾ We strongly recommend that you update all File Daemons that are used to
write data into Dedup Volumes. It is not required, but old File Daemons
do not support the newer FD to SD protocol, and consequently the Global
Endpoint Deduplication cannot not be done on the FD side.

2.10 Deduplication Engine Vacuum
Over time, you will normally delete files from your system, and in doing so, it may
happen that there will be chunks that are stored in dedup containers that are no
longer referenced.
In order to reclaim these unused chunks in containers, the administrator needs to
schedule a vacuum option of the dedup command. The vacuum option will analyze
dedup volumes and mark as free any chunks that are not referenced, thus allowing
the disk space to be reused. The vacuum command can run while other jobs are
running.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

11 / 32

http://www.baculasystems.com/contactus

* dedup
Dedup Engine choice:

1: Vacuum data files
2: Cancel running vacuum
3: Display data files usage

Select action to perform on Dedup Engine (1-3): 1
The defined Storage resources are:

1: File1
2: Dedup

Select Storage resource (1-2): 2
Connecting to Storage daemon Dedup at localhost:9103 ...
3000 Found 1 volumes to scan for MediaType=DedupMedia
Ready to read from volume "Vol1" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol1"
Ready to read from volume "Vol2" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol2"
Ready to read from volume "Vol3" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol3"
End of all volumes.
Vacuum cleaning up index.
Vacuum done.

2.11 Deduplication Engine Status
Is it possible to query the Deduplication Engine to get some information an statistics.
Note that the current interface is oriented toward developers and is subject to
change. For example, the Stats counters can be reset to estimate the work done
by the engine for one job or for one period of time. Here is an example output
of the dedup usage command, followed by an explanation of each section in the
output:

* dedup storage=Dedup usage
Dedupengine status:
DDE: hash_count=1275 ref_count=1276 ref_size=78.09 MB

ref_ratio=1.00 size_ratio=1.13 dde_errors=0
Config: bnum=1179641 bmin=33554393 bmax=335544320 mlock_strategy=1

mlocked=9MB mlock_max=0MB
Containers: chunk_allocated=3469 chunk_used=1275

disk_space_allocated=101.2 MB disk_space_used=68.87 MB
containers_errors=0

Vacuum: last_run="06-Nov-14 13:28" duration=1s ref_count=1276
ref_size=78.09 MB vacuum_errors=0 orphan_addr=16

Stats: read_chunk=4285 query_hash=7591 new_hash=3469 calc_hash=3470
[1] filesize=40.88KB/499.6KB usage=36/484/524288 7% ***...............
[2] filesize=40.13KB/589.0KB usage=18/286/524288 6% **5...............
[3] filesize=25.47KB/655.2KB usage=7/212/524288 3% *4................

...
[64] filesize=4.096KB/4.096KB usage=0/0/524288 0%
[65] filesize=53.25MB/63.90MB usage=800/960/524288 83%3***********

DDE:

◾ hash_count Number of hashes in the Index.
◾ ref_count Number of references in all the Volumes.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

12 / 32

http://www.baculasystems.com/contactus

◾ ref_size The total of all rehydrated references in all the volumes. This
is the size that would be needed if deduplication was not in use.

◾ ref_ratio The ratio between ref_count and hash_count.
◾ size_ratio The ratio between ref_size and disk_space_used.
◾ dde_error The number of invalid data found in the Index.

Config:

◾ bnum The capacity of the hash table in the Index. This is the number
of buckets in the Tokyo Cabinet hash database.

◾ bmin The minimum size of the hash table in the Index. Bacula will not
go below this value when resizing the Index.

◾ bmax The maximum size of the hash table in the Index. Bacula will not
go above this value when resizing the Index. Zero means no limit.

◾ mlock_strategy This is the strategy to apply to lock only the hash
table or the hash table and Index into memory.
– 0 Do not lock any memory.
– 1 Use at most mlock_max bytes to lock only the hash table of the
Index.

– 2 Use at most mlock_max bytes to lock all the Index.
◾ mlocked The current number of bytes locked by the Index.
◾ mlock_max The maximum number of bytes that the Index can lock.

Containers:

◾ chunk_allocated The number of chunks allocated in all containers.
◾ chunk_used The number of chunks that are really in use.
◾ disk_space_allocated The space allocated for all containers.
◾ disk_space_used The space that is really used inside all containers.
◾ containers_error The number of errors related to the containers.

Vacuum:

◾ last_run The date of the last vacuum.
◾ duration The time the vacuum took to complete.
◾ ref_count Number of references handled by last vacuum.
◾ ref_size The total rehydrated size of all references handled by last
vacuum.

◾ vacuum_errors Number of various errors reported during last vacuum.
You can get more information in the trace file.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

13 / 32

http://www.baculasystems.com/contactus

◾ orphan_addr Number of distinct addresses found in the volumes but
not found in the Index during the last vacuum. These appear when the
Storage Daemon crashes, because the DedupEngine is cleaned up but
not the volumes.

Stats:

◾ read_chunk How many chunks have been read since the last reset.
◾ query_hash Number of chunk index queries since the last reset.
◾ new_hash How many new entries in the chunk index since the last reset.
◾ calc_hash How many hashes have been calculated since the last reset.

In the DDE section, both ratios give a different view of what is happening inside the
dedup engine. While ref_ratio gives a true value, ref_size tell us how effective
the dedup engine is, because we are more concerned about the space saved. The
last one takes into account the LZ4 compression and also any possible disparity
between small and big chunks. For example, if there are a lot of small chunks with
a high dedup ratio, ref_ratio will be high, but the space saved will be small as it
concerns only small blocks.
ref_count and ref_size are calculated during a vacuum and are used to reset the
counter with the same names in section DDE. These two counters are then updated
by future backups.

[7] 7k filesize=4.1GB/22.3GB usage=569910/3104523/3145728 \
18% 670030000000000000000000..........684**9

Figure 3: Per Container status

Per Container Status:

In figure 3:

◾ [7] is the ID of the container. This is the number at the end of the container
file which resides in the Dedup Directory defined in bacula-sd.conf. In this
case, “bee_dde0007.blk”

◾ 7k is the size limit for the chunks inside this container.

◾ 4.1GB/22.3GB means that the container size (as shown with ’ls -l’) is 22.3GB,
but only 4.1GB are used in this container. This means that 18.2GB (22.3GB -
4.1GB) can be written into this container without making it grow. Notice that
’ls -l’ doesn’t accurately represent the size of a container file when ’holepunch-
ing’ is used because some of this space can be unallocated (think ’sparse file’).
“ls -s”, “stat” and “du” can display the size that is really used by the con-
tainer. The command shown in figure 4 on the next page below always gives
the size in bytes.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

14 / 32

http://www.baculasystems.com/contactus

◾ usage=569910/3104523/3145728. The 2 first values are the same as 4.1GB
and 22.3GB but are expressed in number of chunks. The 3th value is the the
size of the bit array holding the map of the container. This array grows
per increment of 64K = 524288 bits every time the current array gets full.

◾ 18% is the usage of the container, here 18%=569910/3104523

◾ 670030000000000000000000..........684**9 is the map of the container
cut in 40 parts. A “.” means that the part is empty. “0” means that less 10%
of the part is used, and “9” means that the part is used between 90% and
99%. Finally “*” means that the part is fully used.

$ echo $((`stat -c "%b*%B" bee_dde0007.blk`))

Figure 4: Calculate Allocated size

2.12 Disaster Recovery
2.12.1 Catalog

The Catalog doesn’t contain any reference to the deduplication engine. However,
the dedup volumes’ records in the Catalog are used during the vacuum process.
For this reason, you must make sure to have the Catalog properly restored beforei
starting a dedup vacuum process.

2.12.2 Volumes

If a dedup Volume is in the Catalog but not on disk, a dedup vacuum process will
stop and report an error.

2.12.3 Index

The Index is essential for the deduplication engine. The Index can be reconstructed
from the data on dedup volumes or entirely rebuilt from the containers themselves.
See the section 3.5.

2.12.4 Free Space Map (FSM)

The deduplication engine creates a copy (during a commit) of the FSM after every
important operation in the recovery sub-directory. When the deduplication engine
is not shut down properly, the last copy is used as a reference by the recovery
procedure to remove any operations that started after the time of the last commit
and that could be incomplete. When the original and the copy of the FSM are lost,
it is still possible to rebuild the FSM using references found in volumes. See the
section 3.5.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

15 / 32

http://www.baculasystems.com/contactus

2.12.5 Containers

Containers hold chunks of data. When a container (or part of a container) file is
lost, the data is lost and it is not recoverable by Bacula. Use the deduplication
engine recovery tools 3.5 to identify chunks of data that are lost and restore the
deduplication engine consistency.

3 Dedupengine
The deduplication engine is the heart of Bacula’s Global Endpoint Deduplication.
It has to store, to index and to retrieve the chunks. All chunks are stored in the
Container Area and registered in the Index. The Index is the bottleneck of the
deduplication process because all operations need to access it randomly, and very
quickly. Memory caching and storing the Index on SSD drives will help to maintain
good performance.
The Deduplication Index maintains all the hashes of all chunks stored in the Dedup
Containers. To get effective performance very fast low latency storage is critical. For
large back up data it is best to have the Containers and Deduplication Index on the
same hardware server with the Deduplication Index on solid-state drives (SSDs).
The faster the disk performance, the faster and more efficient the deduplication
process and the data protection will be. In production environments it is best to
avoid configurations which introduce latency and delays in the storage infrastructure
for the Deduplication Index. It is therefore best to avoid spinning disks, remote
access configurations like NFS or CIFS and virtualized SDs. These can be acceptable
for small containers (1-2TB) or to perform tests but will normally not provide
acceptable performance in larger production environments.

3.1 Sizing the Index
The size of the index depends on the number of chunks that you want to store in
the deduplication engine. An upper limit would be 1 chunk per file plus 1 chunk
per 64K block of data.

number_of_chunks = number_of_files + data_amount
64K (1)

If all you have is the storage capacity of your Storage Daemon and want to maximize
it, you must know the average compressed size of the chunks you expect to store
in Containers. If you don’t know the size, you may use 16K.

number_of_chunks = storage_capacity
16K (2)

When you know the number of chunks, you can calculate the size of your index.

index_size = 1.3 ∗ number_of_chunk ∗ 8 + 70 (3)

The index can be split into two parts: the table and the records.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

16 / 32

http://www.baculasystems.com/contactus

index_size = table_size + record_size (4)

table_size = 1.3 ∗ number_of_chunk ∗ 8 (5)

record_size = 1.3 ∗ number_of_chunk ∗ 70 (6)

The table part is small and is accessed by all operations. The record part is bigger
and is sometimes not used for read operations.

Storage size Index size Table part Record part

1 TB 6.3 GB 0.65 GB 5.7 GB

10 TB 63.3 GB 6.5 GB 56.9 GB
Table 1: Samples of Index size for chosen Storage sizes

For good performance, you must try to lock the entire Index into memory, if this
is not possible due to lack of memory resources, keeping at least the hash table in
memory is highly recommended.
But these are not the only requirements. Bacula needs some extra space on disk
and in memory to optimize and resize the Index. We recommend the following:

◾ Be sure to have 3 times the index_size on an SSD drive for the Index.

◾ Try to have index_size+table_size of RAM for the Index.

◾ At least be sure to have 2 times the “table_size” of RAM for the Index.

3.1.1 Setting up the Index size

The Index is based on a hash table that by design has a fixed size. A B-Tree
structure is used to handle collisions in the hash table. The size of the table is
important. If too small, the table will have to handle overflow that will slowdown
the Index. If too big, the table will consume space and memory uselessly. The
table can be resized online and Bacula takes advantage of the vacuum procedure
to optimize the table size when needed. Creating the table at the right size from
the start will ensure good performance from the beginning and avoid a reduction in
performance. The user can define the minimum and maximum sizes of the table.
At the end of the vacuum, if the amount of data to delete is large, or if the size of
the table is unbalanced regarding the amount of remaining data, Bacula resizes the
table to a size equal to 1.3 time the number of hashes remaining in the Index. This
new size will be adjusted to match the minimum and maximum values chosen by
the user.

bnum_min < table_size ∗ 1.3 < bnum_max

The default values for bnum_min is 33,554,432 and 0 for bnum_max, meaning
that their is no limit. These numbers are the number of chunks that the Index can

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

17 / 32

http://www.baculasystems.com/contactus

handle efficiently. A chunk can have a size between 1K to 64K. 16K is a good mean
value. This means that the default index range is well suited for a storage space
between 1TB and 10TB.
Keep in mind that the size of the index affects the amount of memory required to
lock the index in memory.

3.1.2 Locking the index into memory

The operating system caches data that is used often in memory. Unfortunately the
huge amount of data going in and out of the Storage Daemon usually wipes out the
Index data from the system cache. The alternative is to force the system to map
and lock some parts of the Index into memory.
The user has a choice between 3 strategies:

◾ 0 nothing is locked into memory

◾ 1 try to lock the table part of the Index into memory

◾ 2 try to lock the entire Index into memory

Bacula will not allocate more than the maximum value defined by the user (mlock_max)
and will check the amount of memory available to not overload the system.
See how to change these variables in section 3.2 Commands to Tune the Index.

3.2 Commands to Tune the Index
Bacula Enterprise 8.2 added 4 new parameters to tune the Index. These param-
eters are initialized with default values when the Dedupengine is created or when
Bacula upgrades the Dedupengine from an older version. These parameters may be
modified at any time. They will be saved inside the Dedupengine and will be used
during the next vacuum.
The Dedupengine can be tuned by changing some internal variables. To have a
good understanding of how the deduplication engine works, be sure to read sections:
3.1 Sizing the Index and 3.2 Commands to Tune the Index.

◾ bnum_min The minimum capacity of the hash table in the Index. Bacula will
not go below this value when resizing the Index.

◾ bnum_max The maximum capacity of the hash table in the Index. Bacula will
not go above this value when resizing the Index. Zero means no limit.

◾ mlock_strategy This is the strategy to lock the Index into memory. You
have the choice between 3 strategies:

– 0 Do not lock any memory.
– 1 Use at most mlock_max bytes to lock only the hash table of the Index
into memory. (the default)

– 2 Use at most mlock_max bytes to lock all the Index into memory.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

18 / 32

http://www.baculasystems.com/contactus

◾ mlock_max The maximum amount of bytes that may be used to lock the
Index into memory. Zero means no limit. (the default)

Each of these variables may be modified using the dedup command together with
the name of the variable. The previous value is displayed for reference.

*dedup storage=Dedup bnum_min=33554393
3000 dedupsetvar bnum_min previous value was 33554393
*dedup storage=Dedup bnum_max=33554393
3000 dedupsetvar bnum_max previous value was 0
*dedup storage=Dedup mlock_strategy=1
3000 dedupsetvar mlock_strategy previous value was 1ff
*dedup storage=Dedup mlock_max=4096MB
3000 dedupsetvar mlock_max previous value was 0

You can review all of these values at once using the dedup usage command. At
the top of the output you have the section Config::

* dedup storage=Dedup usage
Dedupengine status:
...
Config: bnum=1179641 bmin=33554393 bmax=33554393 mlock_strategy=1

mlocked=9MB mlock_max=0MB
...

See the section 2.11 Deduplication Engine Status for an explanation of the
other variables.
These values will be used during the next vacuum if the Index needs to be optimized.
You can force an optimize by adding the option forceoptimize to the the dedup
vacuum command.

* dedup storage=Dedup vacuum forceoptimize

To force the Dedupengine to use a new mlock value without running a dedup
vacuum, you may use the dedup tune indexmemory command.

* dedup storage=Dedup tune indexmemory

3.3 Punching holes in containers
Some Linux filesystems like XFS and EXT4 have the ability to punch a hole1 in
a file. A portion of the file can be marked as unwanted and the associated storage
released. Of course when a process writes into such a hole, the filesystem allocates
space to this area.
Because the use of this technique can increase fragmentation of the filesystem and
contribute to slower performance, it is recommended to avoid it when not needed,
even though Bacula does its best to use it in a way that will not significantly impact
performance.
The hole punching can happen in two places in the DDE:

1Available for Redhat 6.7 and Redhat 7

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

19 / 32

http://www.baculasystems.com/contactus

1 detect and release large unused areas in containers,

2 prevent the allocation of chunks in these holes and prefer areas that are too
small to be converted into holes.

Both of these processes are independent. As soon as you set up a hole_size,
the DDE tries to allocate space outside of areas that are good candidates for hole
creation, even if no holes have been created before.

3.3.1 Theory: creating holes

Because these holes can be reused by any container or file on the filesystem, this
approach contributes to its fragmentation. That is why you must keep the size of
these holes large enough to not reduce the performance of the filesystem. It as
been shown that reading or writing random blocks of 4MB is done at a speed similar
to sequential reads or writes. That is why we recommend setting the hole_size
to 4MB. Smaller values can increase the work for the filesystem to manage all these
small holes, reduce the performance, and make filesystem recovery processes (fsck)
take longer. Using a higher value would reduce the probability to find such an
unused amount of space inside the containers.
The DDE doesn’t store the holes that it has created and doesn’t use the information
stored in the filesystem itself. The DDE creates the holes on top of the previous
ones, and the filesystem ignores the requests for areas that are already holes.
The holes are aligned on the hole_size boundaries that we call extents. Remember
that containers handle chunks of different sizes, and that are not all a power of 2,
so they can span two extents. Spanning chunks have weird consequences on the
holes:

1 A single used chunk spanning two extents will prevent the conversion of these
2 extents into holes.

2 A hole that has free spanning chunks at one or both ends holds more space
than the space that has been given back to the filesystem.

3.3.2 Theory: smart allocating in between holes

As previously stated, if an unused area is big enough, only the part that is aligned
on the hole_size boundaries will be converted into a hole. This allows some space
around these holes that is still allocated by the filesystem and can be used without
“consuming” any new space. The DDE will chose to allocate new chunks in these
spaces first, even if these areas have not been converted into holes yet because the
DDE relies on existing free space and not on holes that have been created in the
past.
When all space between holes has been allocated, the system goes back to the
sequential allocation strategy and uses space in existing holes and finally allocates
space at the end of the file.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

20 / 32

http://www.baculasystems.com/contactus

3.3.3 Commands to create and manage holes

Add the holepunching option to the vacuum command to create the holes at the
end of the vacuum procedure. The command in bconsole is:

* dedup vacuum holepunching storage=<DeviceName>

The first time you use the holepunching option, the DDE sets the hole size to
4194304 (4MB). The size is stored in the hole_size variable and can be modified
or initialized before the first use. The option forceoptimize can be used together
with the holepunching option without restriction. The time required to identify
and create holes should not require more than 10s per TB.
You can change the hole_size to any value that is a power of 2 bigger than 1
MB. There is no upper limit, but values above 32MB are probably excessive. To
change the hole_size, use the command:

* dedup storage=<DeviceName> hole_size=<Size_in_Byte>

For example you can chose a smaller value with the aim of releasing more space.

*dedup storage=Dedup hole_size=1048576
3000 dedupsetvar hole_size previous value was 4194304

This new value will be used the next time the vacuum is run with the holepunching
option. However, this value will be immediately used by the allocation process to
avoid using free space that could be released by the next holepunching procedure.
You can disable smart allocation by setting the value to zero. Notice that this value
will set the default value to 4MB the next time you use the holepunching option
in the vacuum command.

*dedup storage=Dedup hole_size=0
3000 dedupsetvar hole_size previous value was 4194304

You can review this value using the dedup usage command. At the top of the
output you have the section Hole::

* dedup storage=Dedup usage
Dedupengine status:
...
HolePunching: hole_size=1024 KB
...

3.4 Quiesce and Unquiesce
It is possible to quiesce the dedupengine to safely copy its data without shutting
down the DDE. The commands quiesce and unquiesce allow to freeze and un-
freeze the DDE.

* dedup storage=Dedup quiesce
3900 quiesce successful
* dedup storage=Dedup unquiesce
3900 unquiesce successful

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

21 / 32

http://www.baculasystems.com/contactus

When the quiesce command is run, all running backups and restores are suspended.
If the scrub is running, it is paused. If the vacuum is running, the quiesce wait for
the end of the vacuum before to return. When the DDE is frozen, you can backup
or copy all the data related to the DDE. The data are in a crash-consistent state,
this mean that after the recovery, the data will be consistent. When the unquiesce
command is run, all the backups and restores resume from the point where they
had previously stopped. The scrub continue from where it was interrupted.

3.5 Detect, Report and Repair Dedupengine Inconsistencies
The dedup vacuum command provides three options: checkindex, checkmiss and
checkvolume which can detect, report and when possible repair inconsistencies in
the DDE. checkindex can be used with the two others. When checkmiss and
checkvolume are used together, checkmiss is ignored.
The checkindex and checkvolume options use a temporary file chunkdb.tch that
stores the hash for every suspicious chunk to save multiple computations.
The three options will log information to the trace file.

3.5.1 checkindex option of the vacuum command

At the end, the Scrub process does a checkindex to check the coherence between
the Index and the FSM and to detect if an address is used twice or if an entry refers
to an empty chunk.
The option checkindex checks the consistency of the Index with itself and the
coherence between the Index and the FSM. When multiple entries in the Index
address the same chunk in one container (an address collision), the procedure reads
the chunk, calculates the hash and deletes all invalid entries from the index. This
procedure is executed before reading the volumes, and it iterates the Index twice:
Once to detect collisions, and one more time to delete all invalid entries.
The checkindex option displays some statistics in the trace file:

cleanup_index_addr_duplicate unset2miss=0
cleanup index Phase 1 cnt=703783 badaddr=0 suspect=0 unset=0 2miss=0 miss=0

(count=703784 err=0 2miss_err_cnt=0)
cleanup index Phase 2 cnt=703783 2miss=0 (count=703784 err=0 2miss_err=0)

◾ cnt: the number of data entries in the Index.

◾ badaddr: the number of entries in the Index with a fanciful address that
don’t match any container or any chunk inside a container.

◾ suspect: the number of colliding addresses that must be checked.

◾ unset: the number of addresses that were unexpectedly marked as free in
the FSM and that have been temporary marked as used until the vacuum
determines if the entry is needed or not.

◾ 2miss: the number of new missing entries.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

22 / 32

http://www.baculasystems.com/contactus

◾ miss: the number of entries that are missing, meaning that there is no match-
ing chunk in the containers. This includes the newly created entries.

◾ count: the number of entries including the meta data (cnt + 1)

◾ err: a counter for uncommon errors.

◾ 2miss_err: the number of errors when creating or converting an erroneous
entry into a missing one.

3.5.2 checkmiss and checkvolume options of the vacuum command

The option checkvolume is deprecated since the availability of the Scrub process.
In future releases the checkvolume option will be silently replaced by the option
checkmiss.
These options search the Index for every reference found in the volumes. This
can significantly increase the time of the vacuum if the Index doesn’t fit into
memory. Be sure to check that using the command dedup storage=Dedup tune
indexmemory.
The option checkmiss simply creates dummy entries when a reference in not found
in the Index. This entry indicates that the chunk is missing and could be resolved
by future backups or by a Scrub. This option is less resource intensive than the
checkvolume because it doesn’t access the containers.
The option checkvolume checks the consistency of the Index with every reference
found in the volumes. If the hash of the reference is not found in the Index or
doesn’t match the address, then the chunks at the given addresses are read, the
hashes are calculated and the Index is fixed when appropriate. Incorrect entries are
converted into missing to indicate that some chunks are missing. This option no
longer uses the file orphanaddr.bin. This file is now deleted after a successful
vacuum.
Every mismatch is logged in the checkvolume trace file with the coordinate of
the file that holds the reference. Only one line is logged per file and per type of
mismatch, others are counted in the statistics. Tools that can use this information
to exclude the faulty file during a restore (for example) will come later.
The lines in the trace file look like this:

bacula-sd: dedupengine.c:4151 VacuumBadRef FixedIndex FI=1 SessId=1
SessTime=1479138666 : ref(#55fd99e7 addr=0x0016000000000001 size=22254)
idx_addr=0x0038000000000001

Every related line holds the keyword “VacuumBadRef” followed by one second key-
word, see below for the details:

◾ RefTooSmall: The record in the volume that holds the reference is too small
to hold a reference and is then unusable and not processed further.

◾ BadAddr: The address in the reference looks fanciful and is ignored. The
record in the volume may be corrupted.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

23 / 32

http://www.baculasystems.com/contactus

◾ FixedIndex: One reference has been verified and used to fix the Index.
Maybe the Index had no entry for the hash of this reference or had a different
address.

◾ OrphanRef: The hash related to this reference doesn’t match the related
chunk or the one given by the Index if any. This reference is an orphan. The
file that holds this reference cannot be fully recovered.

◾ RecoverableRef: The hash related to this reference doesn’t match the
related chunk, but the Index has a different address that does match the
chunk. Then the file can be restored using “dedup storage=XXXXX rehy-
dra_check_hash=1” during the time of the restore. The address is written
in file orphanaddr.bin

The other fields on the line depend on the type:

◾ FI, SessId and SessTime are the coordinates of the file as written in the
Catalog.

◾ fields inside ref() are related to the reference.

At the end, Bacula displays some statistics in the trace file:

Vacuum: idxfix=0 2miss=0 orphan=0 recoverable=0
Vacuum: idxupd_err=0 chunk_read=0 chunk_read_err=0 chunkdb_err=0

◾ idxfix: The number of entries fixed in the Index. See FixedIndex above.

◾ orphan: The number of orphan chunks. See OrphanRef above.

◾ recoverable: The number of recoverable chunks. See RecoverableRef
above.

◾ idxfix_err: The number of errors while trying to fix the entries.

◾ chunk_read: The number of chunks that have been read from disk to verify
the hash.

◾ chunk_read_err: The number of errors while reading the chunks.

◾ chunkdb_err: The number of errors while updating the cache that stores the
hashes of the block that have been read.

The last three counters are also updated by the “checkindex” option.

3.5.3 Self Healing

It is possible to enable an option to store all chunks of data to the Deduplication
Engine even if the chunks are already stored.
dedup storage=Dedup self_healing=1

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

24 / 32

http://www.baculasystems.com/contactus

3.5.4 Container Scrubbing

The Scrub process reads every chunk in every container and compares them with
the Index. If an inconsistency is found, the Index is corrected automatically.
Since the container files can be very large, the Scrub process can take days to read
everything within them. Bacula jobs (backup, restore, verify, migration, copy, ...)
can run while the Scrub process is running. A vacuum process automatically pauses
the Scrub process for the duration of the vacuum.
It is recommended to run the Scrub on a regular basis. To minimize the impact of
the Scrub process during your backup window, it is possible to control the speed
or suspend and resume the process with a bconsole command. This may be done
manually, or scripted as part of a cron job:

$ cat /etc/cron.d/bacula-scrub
BCONS=/opt/bacula/bin/bconsole
LOG=/opt/bacula/working/scrub.log

#M H DOM M DOW USER CMD
01 18 * * * bacula echo "dedup scrub suspend storage=Dedup" | $BCONS > $LOG
01 8 * * * bacula echo "dedup scrub resume storage=Dedup" | $BCONS > $LOG

a soften solution limiting then bandwith
#01 18 * * * bacula echo "dedup scrub_bwlimit=10mb/s storage=Dedup" | $BCONS > $LOG
#01 8 * * * bacula echo "dedup scrub_bwlimit=0 storage=Dedup" | $BCONS > $LOG

To limit the speed of the Scrub process, you can set the DedupScrubMaximumBandwidth
directive on the Storage resource in the bacula-sd.conf file.

Storage {
Name

...
DedupScrubMaximumBandwidth = 20MB/s

}

This value may be adjusted manually with a bconsole command:

* dedup scrub_bwlimit=10mb/s

Scrubbing is more effective after a “dedup vacuum checkmiss”. The checkmiss
option forces the vacuum to create dummy entries in the Index for every orphan
reference found in the volumes. The Scrub process will resolve these dummy entries
when it finds a matching chunk. When the Scrub doesn’t find any related entry in
the Index, the chunk is marked as free. The checkvolume option of the vacuum
command also creates dummy entries. See the differences in the vacuum section.

$ cat /opt/bacula/scripts/dedup-scrub
#!/bin/sh

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

25 / 32

http://www.baculasystems.com/contactus

SD=Dedup1
LOG=/opt/bacula/working/scrub.log
PATH=$PATH:/opt/bacula/bin

exec 1>> $LOG
exec 2>> $LOG

date
echo "dedup vacuum checkmiss storage=$SD" | bconsole
echo "dedup scrub run storage=$SD" | bconsole
date

Scrubbing can be done by multiple threads, each of them handling one container at
a time and should be able to reach a throughput up to 400MB/s per CPU core2.
The Scrub saves it’s state at regular intervals and can restart from where it has
been interrupted. The Scrub process doesn’t restart automatically after a restart or
a reboot.
The Scrub starts handling the containers that are the largest to efficiently balance
the work between the threads.
At the end, the Scrub process does a checkindex to check the coherence between
the Index and the FSM and to detect if an address is used twice or if an entry refers
to an empty chunk.
The Scrub process can be controlled from bconsole via the dedup command:

*dedup
Dedup Engine choice:

1: Vacuum data files
2: Cancel running vacuum
3: Display data files usage
4: Scrub data files options

Select action to perform on Dedup Engine (1-4): 4
Dedup Engine Scrub Process choice:

1: Run Scrub
2: Stop Scrub
3: Suspend Scrub
4: Resume Scrub
5: Status Scrub

Select Scrub action to perform on Dedup Engine (1-5):

It is possible to run every Scrub sub-command from the command line:

* dedup scrub run storage=Dedup
* dedup scrub run worker=3 storage=Dedup
* dedup scrub run reset storage=Dedup

2limited by the SHA512/256 calculation

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

26 / 32

http://www.baculasystems.com/contactus

The “dedup scrub run” command starts the Scrub process. If the Scrub has been
interrupted by a crash or a restart of the daemon, the Scrub process will continue
from its last saved point. The “worker” option controls the number of threads, the
default is one. The “reset” option forces the Scrub to ignore its last saved point
and restart from the beginning.
Other Scrub commands available:

* dedup scrub wait storage=Dedup
* dedup scrub stop storage=Dedup
* dedup scrub suspend storage=Dedup
* dedup scrub resume storage=Dedup

◾ wait. Wait until the end of the Scrub process.

◾ stop. Stop any running threads of the Scrub process.

◾ suspend. Suspend all the threads of the Scrub process.

◾ resume. Resume all the threads of the Scrub process.

“suspend” and “resume” do not modify the options given to the “run” command.
“stop” stops the threads and allows a restart of the Scrub process using the “run”
command and a different number of threads for example.
Finally you can get the status of last Scrub that has been started.

* dedup scrub status storage=Dedup
Scrubber: last_run="10-Aug-2017 12:05:38" started=1 suspended=0 paused=0 quit=0
pos=1225639597 pos=8% bw=44957018/50000000

* dedup scrub wait storage=Dedup
* dedup scrub status storage=Dedup
Scrubber: last_run="10-Aug-2017 12:05:38" started=0 suspended=0 paused=0 quit=1
pos=14453933383 pos=100% bw=3269270/50000000

The “status” sub-command tells you if the Scrub process is running, if it has
been suspended by the user or paused by the vacuum, the absolute position that
is the total of all the bytes that have been read for all the containers, the relative
position in percent and also the disk bandwidth in bytes/s compared with what has
been allowed by the variable “scrub_bwlimit”. The position is updated every 10
seconds.
Some useful information is logged to the trace file. The “status” sub-command,
displays the status of the Scrub process for each container:

...
Scrub status [66] size=327677663 scrub_pos=-1 scrub_start=1502366453
Scrub status [67] size=327677780 scrub_pos=43670 scrub_start=1502367337
Scrub status [68] size=327679152 scrub_pos=0 scrub_start=0
...
Scrub status read_err=0 fix_err=0 feed=0
Scrub status fix miss=0 wrong=0 false_set=0 false_unset=0

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

27 / 32

http://www.baculasystems.com/contactus

Here, the Scrub process for container [66] is finished, container [67] is being
processed and the Scrub process for container [68] is still pending.
The position is in bytes, and must be compared to the size of the container on
the left - also in bytes. The “scrub_start” is the epoch when the Scrub started
handling the container. The counters at the end of the output show the current
general statistics:

◾ read_err is the number of chunks that were unreadable from the disk, or
corrupted and finally ignored. As Holes are not yet skipped by the Scrub
process, chunks in these areas will increment this counter.

◾ fix_err is the number of errors encountered when trying to fix an existing
error

◾ feed is not documented and should always be 0.

◾ miss is the number of entries in the Index that were missing and have been
resolved by the Scrub process.

◾ wrong is the number of entries in the Index that were pointing to the wrong
chunk and that have been fixed by the Scrub process.

◾ false_set is the number of chunks that were incorrectly marked as used,
but were not required by the Index and were then marked as free.

◾ false_unset is the number of chunks that were incorrectly marked as free,
but required by the Index and were then marked as used.

When the Scrub process finishes a container, it logs the statistics for this container
in the trace file:

ScrubContainer [106] end pos=-1 fatal=0 read_err=0 fix_err=0 feed=0
ScrubContainer [106] fix miss=0 wrong=0 false_set=0 false_unset=0

At the end, the Scrub process performs a cleanup identical to the cleanup done by
the vacuum “checkindex” command and finally displays consolidated statistics for
all of the containers.

cleanup_index_addr_duplicate unset2miss=1
cleanup index Phase 1 cnt=2362298 badaddr=0 suspect=0 unset=0 2miss=0 miss=0 (count=2362299 err=0 2miss_err=0)
cleanup index Phase 2 cnt=2362298 2miss=0 (count=2362299 err=0 2miss_err=0)
Scrubber index cleanup chunk_read=0 chunk_read_err=0 chunkdb_err=0
ScrubContainer END read_err=0 fix_err=0 feed=0 cleanup=OK
ScrubContainer FIX miss=0 wrong=0 false_set=0 false_unset=0

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

28 / 32

http://www.baculasystems.com/contactus

4 Hardware Requirements
4.1 CPU
Bacula’s Global Endpoint Deduplication consumes CPU resources on both File Dae-
mon and Storage Daemon. The table 2 shows operations done by both daemons
depending on the deduplication mode.
Note that the Storage Daemon has to re-calculate hashes of the chunks sent by the
File Daemon to ensure the validity of the data added to the Dedupengine.

Dedup=none Dedup=storage Dedup=bothside
Client - - hash + compress
Storage - hash + compress + DDE decompress + hash + DDE

Table 2: Operations done by each daemon

On recent Intel processors, compression and hash calculations each require about
1GHz of CPU power per 100MB/sec (1Gbps). Decompression requires only 0.25GHz
for the same throughput. The Dedupengine depends more on IOPs rather than on
CPU power (about 0.1GHz per 100MB/sec). Both daemons must also handle
network and disks (around 1GHz per 100MB/sec).
The rules of thumb might be to dedicate 3GHz per 100MB/s for the File Daemon
or the Storage Daemon when doing deduplication.

100MB/sec (Gbps) 400MB/sec (4Gbps) 1000MB/s (10Gbps)
Client or storage 3GHz 12GHz 30GHz

Table 3: CPU requirements (Intel based)

Add about 50% more GHz for latest generation of AMD processors.

4.2 Memory
The File Daemon requires additional RAM to do bothsides deduplication because
it has to keep the chunks in memory until the Storage Daemon sends a command
to send or to drop a chunk of data. The extra memory required is about 4MB per
running job.
The Storage Daemon also requires about 4MB of memory for every running job.
The Dedupengine also needs more of memory for efficient lookups in the index file,
see section 3

4.3 Disks
On the File Daemon, the directive Enable Client Rehydration = yes can gen-
erate some extra reads during the restore process and increase the disk load and
possibly slow down the job.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

29 / 32

http://www.baculasystems.com/contactus

On the Storage Daemon, chunks are stored randomly in Containers, and the disk
systems might have to do significantly more random I/O during backup and restore.
Note that migration/copy and virtual full Jobs do not need to rehydrate data if the
destination device supports deduplication. Chunks are stored in 65 container files
in the Dedup Directory. All Volumes use references to those container files. This
means that your system must be configured to manage disk space and extend disk
space if necessary. We advise you to use LVM, ZFS, or BTRFS.
For effective performance, it is recommended to store the deduplication engine Index
on dedicated SSDs, see section 3. It is not recommended to store deduplication
engine containers with the Catalog.
The index file used to associate SHA512/256 digests with data chunk addresses will
be constantly accessed and updated for each chunk backed up. Using SSD disks
to store the index file will give better performance. The number of I/O operations
per second that SSD devices can achieve will drive the global performance of the
deduplication engine. For example, if your disk system can do 10,000 operations
per second, it means that your Storage Daemon will be able to write between 5,000
and 10,000 blocks per second to your data disks. (310 MB/sec to 620 MB/sec
with 64 KB block size, 5 MB/sec to 10 MB/sec with 1 KB block size). The index
is shared between all concurrent Jobs.
To ensure that a file system required for container, disk, volumes is mounted before
the Storage Daemon starts, you can edit the bacula-sd.service unit file

systemctl edit bacula-sd.service

This will create the file /etc/systemd/system/bacula-sd.service.d/override.conf
to add bacula-sd.service customized settings. Please add the following line line
to the file and save it:

RequiresMountsFor=/bacula/dedup/index /bacula/dedup/containers /bacula/dedup/volumes

5 Restrictions and Limitations
◾ You must take care to define unique Media Types for Dedup Volumes that
are different from Media Types for non-Dedup Volumes.

◾ The “hole punching” feature is available on Linux systems with kernel 2.6.37
and later. The function was also backported by Redhat to their 2.6.32 kernel
(on Redhat 6.7). The feature is not available on FreeBSD or Solaris OSes.

◾ Some files are not good candidates for deduplication. For example, a mail
server using maildir format will have a lot of small files, and even if one
email was sent to multiple users, SMTP headers will probably interfere with
the deduplication process. Small files will tend to enlarge your chunk index
file resulting in a poor dedup ratio. A good dedup ratio of 20 for a file of
1024 bytes will save only 19 KB of storage, so much less gain than with a file
of 64 KB with a poor dedup ratio of 2.

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

30 / 32

http://www.baculasystems.com/contactus

◾ Dedup Volumes cannot just be copied for offsite storage. Dedup Volumes
should stay where the deduplication engine is running. In order to do offsite
copies, it is recommended to run a Copy Job using a second Dedup Storage
Daemon for example, or to create rehydrated volumes with a Copy/Migra-
tion/Virtual Full job using a regular disk Device. The VirtualFull support was
added in version 8.0.7. The Storage Daemon to Storage Daemon Copy/Mi-
gration process with deduplication protocol was added in version 8.2.0.

◾ A Virtual Full between two Storage Daemons is currently not supported.

◾ Data spooling cannot be used with deduplication. Since versions 8.2.12 and
8.4.10, data spooling is automatically disabled whenever a device resource is
configured with Device Type = Dedup.

6 Supported platforms
All Bacula Enterprise File Daemons (clients) support the Global Endpoint Dedupli-
cation. The Bacula Enterprise supported platforms are listed table 4

Platform Availability Support Level Agreement

Linux i32/i64 Server and Client Full

FreeBSD Server and Client Full

Solaris Server and Client Full

Windows i32/i64 Client only Full

Other Un*x/BSD
systems

Client only Reasonable effort

Table 4: Supported platforms

Revision History

Version Date Owner Changes
1.0 18 June 2014 Eric Initial creation
1.1 13 August 2014 Arno Minor fixes, spelling
1.2 27 August 2014 Arno Corrections, suggestions

8.0.1-2 03 September 2014 Eric Add note about bscan, bextract
8.0.1-3 09 September 2014 Eric Add note about offsite storage
8.0.4 31 Octobre 2014 Eric Add note FD Dedup Cache Directory

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

31 / 32

http://www.baculasystems.com/contactus

Version Date Owner Changes
8.0.4-1 06 November 2014 Alain Update the DDE Status
8.0.7-1 13 December 2015 Eric Add note on AllowCompression, re-

move limitation about bscan, bex-
tract and specify that VF is sup-
ported with version 8.0.7.

8.2.0-1 March 2015 Alain Add notes on new 8.2 tuning param-
eters.

8.2.0-2 2 Apr 2015 Eric Review and corrections.
8.2.0-3 12 May 2015 Alain Improved Client Side Rehydration

section.
8.2.0-4 28 May 2015 Alain Added description of vacuum_error

and orphan_addr.
8.2.3 05 June 2015 Bill Review and corrections.
8.3.0 28 September 2015 Alain Add part about hole punching.
8.4.1 19 November 2015 Eric Add information about hole punch-

ing support.
8.4.12 17 March 2016 Alain Add note about auto disabling data

spooling.
8.4.12-1 8 August 2016 Arno Minor wording and layout modifica-

tions.
8.6.5 15 December 2016 Alain Add checkindex, checkvolume op-

tion to dedup vacuum.
8.6.5-1 03 March 2017 Alain Add description of container status

in dedup usage output.
8.6.5-2 27 March 2017 Alain Add directive MaxContainerSize.
8.6.15-1 19 April 2017 Eric Add self healing option.
8.6.16 03 May 2017 Eric Fix undefined references.
8.6.16 19 July 2017 Bill Full review and corrections.
8.6.18 15 August 2017 Alain Update scrub and vacuum.
8.6.18 30 August 2017 Bill Scrub section review and correc-

tions.
8.11.4 27 February 2018 Alain Add quiesce and quiesce section.
10.2.0 27 November 2018 Eric Fix 3035 about Media Type
12.2.3 16 March 2020 Eric Add information about platforms

Global Endpoint Deduplication
Copyright © March 2020 Bacula Systems ..www.baculasystems.com/contactus

All trademarks are the property of their respective owners

32 / 32

http://www.baculasystems.com/contactus

